首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4672篇
  免费   414篇
  国内免费   341篇
化学   768篇
晶体学   17篇
力学   2519篇
综合类   63篇
数学   597篇
物理学   1463篇
  2024年   5篇
  2023年   34篇
  2022年   46篇
  2021年   75篇
  2020年   114篇
  2019年   88篇
  2018年   111篇
  2017年   146篇
  2016年   173篇
  2015年   153篇
  2014年   202篇
  2013年   416篇
  2012年   167篇
  2011年   225篇
  2010年   177篇
  2009年   228篇
  2008年   227篇
  2007年   259篇
  2006年   268篇
  2005年   233篇
  2004年   269篇
  2003年   202篇
  2002年   186篇
  2001年   158篇
  2000年   140篇
  1999年   134篇
  1998年   135篇
  1997年   127篇
  1996年   115篇
  1995年   93篇
  1994年   85篇
  1993年   72篇
  1992年   67篇
  1991年   67篇
  1990年   33篇
  1989年   29篇
  1988年   18篇
  1987年   21篇
  1986年   27篇
  1985年   22篇
  1984年   13篇
  1983年   7篇
  1982年   23篇
  1981年   11篇
  1980年   8篇
  1979年   5篇
  1978年   2篇
  1977年   3篇
  1973年   2篇
  1957年   4篇
排序方式: 共有5427条查询结果,搜索用时 234 毫秒
1.
A continuum damage model was developed to describe the finite tensile deformation of tough double-network (DN) hydrogels synthesized by polymerization of a water-soluble monomer inside a highly crosslinked rigid polyelectrolyte network. Damage evolution in DN hydrogels was characterized by performing loading-unloading tensile tests and oscillatory shear rheometry on DN hydrogels synthesized from 3-sulfopropyl acrylate potassium salt (SAPS) and acrylamide (AAm). The model can explain all the mechanical features of finite tensile deformation of DN hydrogels, including idealized Mullins effect and permanent set observed after unloading, qualitatively and quantitatively. The constitutive equation can describe the finite elasto-plastic tensile behavior of DN hydrogels without resorting to a yield function. It was showed that tensile mechanics of DN hydrogels in the model is controlled by two material parameters which are related to the elastic moduli of first and second networks. In effect, the ratio of these two parameters is a dimensionless number that controls the behavior of material. The model can capture the stable branch of material response during neck propagation where engineering stress becomes constant. Consistent with experimental data, by increasing the elastic modulus of the second network the finite tensile behavior of the DN hydrogel changes from necking to strain hardening.  相似文献   
2.
We performed laboratory experiments on bubbly channel flows using silicone oil, which has a low surface tension and clean interface to bubbles, as a test fluid to evaluate the wall shear stress modification for different regimes of bubble migration status. The channel Reynolds numbers of the flow ranged from 1000 to 5000, covering laminar, transition and turbulent flow regimes. The bubble deformation and swarms were classified as packing, film, foam, dispersed, and stretched states based on visualization of bubbles as a bulk void fraction changed. In the dispersed and film states, the wall shear stress reduced by 9% from that in the single-phase condition; by contrast, the wall shear stress increased in the stretched, packing, and foam states. We carried out statistical analysis of the time-series of the wall shear stress in the transition and turbulent-flow regimes. Variations of the PDF of the shear stress and the higher order moments in the statistic indicated that the injection of bubbles generated pseudo-turbulence in the transition regime and suppressed drag-inducing events in the turbulent regime. Bubble images and measurements of shear stress revealed a correlated wave with a time lag, for which we discuss associated to the bubble dynamics and effective viscosity of the bubble mixture in wall proximity.  相似文献   
3.
Thin films (monolayer and bilayer) of cylinder forming polystyrene‐block‐polydimethylsiloxane (PS‐b‐PDMS) were shear aligned by the swelling and deswelling of a crosslinked PDMS pad that was physically adhered to the film during solvent vapor annealing. The nanostructures formed by self‐assembly were exposed to ultraviolet‐ozone to partially oxidize the PDMS, followed by calcination in air at 500 °C. In this process, the PS segments were fully decomposed, while the PDMS yielded silica nanostructures. The highly aligned PDMS cylinders were thus deposited as silica nanolines on the silicon substrate. Using a bilayer film, the center‐to‐center distance of these features were effectively halved from 38 to 19 nm. Similarly, by sequential shear‐alignment of two distinct layers, a rhombic array of silica nanolines was fabricated. This methodology provides a facile route to fabricating complex topographically patterned nanostructures. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1058–1064  相似文献   
4.
ABSTRACT

The authors present the results of an investigation in Fe–Ni-Cr austenitic alloys of the low-temperature deformation-induced segregations of nickel that form in the micro regions being (i) located close to grain- and subgrain boundaries and (ii) characteristic of the concentration and magnetic inhomogeneities indicated by the appearance of a dark diffraction contrast at the electron diffraction patterns taken from these regions typical (at the same time) of an enhanced value of Curie temperature. The observed effects were connected with the micro distortions caused by the local change of lattice parameter because of an increase in nickel concentration, as well as in the result of a magnetostriction dilatation. Using methods of the X-ray energy dispersive spectroscopy (XEDS) and atomic-probe body-section radiography (tomography – APT) has made it possible to determine the borders of those regions of austenite that were characteristic of an enhanced concentration of nickel in the fields of the localisation of a deformation-induced segregation of nickel in the vicinity of grain (subgrain) boundaries of austenitic alloys of the types Fe–13Cr–30Ni and Fe–37Ni–3Ti.  相似文献   
5.
《Current Applied Physics》2015,15(11):1296-1302
One-dimensional ZnO materials have been promising for field-emission (FE) application, but how to facially control the alignment of ZnO emitters is still a great challenge especially for patterned display application. Here, we report the fabrication of novel ZnO nanowire (NW) line and bundle arrays for patterned field-electron emitters. The effects of PS template size and heating time on the resulted ZnO nanoarrays were systematically studied. The deformation degree of PS templates was controlled and hence utilized to adjust the alignment of electrochemically deposited ZnO arrays. It was found that the length of NW lines and the density of NW bundles can effectively tuned by the PS template heating time. The optimal FE performance with turn-on electric field as low as of 4.4 V μm−1 and the field-enhancement factor as high as of 1450 were achieved through decreasing the screening effect among the patterned field-electron emitters.  相似文献   
6.
In this work, we report the synthesis of AB2 shaped amphiphilic azo block copolymer by macromolecular azo coupling reaction. The product and intermediates were characterized by various methods. The selfassembly in selected solvents and photo-responsive behavior of the copolymer were studied by means of UV–vis spectrophotometry and TEM. Spherical aggregates can be obtained by gradually adding water into the solution of this amphiphilic azo block copolymer. Upon irradiation with polarized UV(365 nm)light, the aggregates can be elongated in the polarized direction.  相似文献   
7.
基于能量变分原理,拟定轴向荷载作用下箱梁的纵向位移函数,得到关于翼板剪切变形引起的位移差函数的基本微分方程,继而推导出箱梁翼板纵向应力表达式,并首次得出角隅轴向荷载作用下翼板出现应力不均匀分布的荷载及边界条件。通过对一模型箱梁进行计算,并与通用有限元软件ANSYS壳单元计算结果进行比较,验证了该方法和所推导公式的正确性。研究结果表明,当作用于简支箱梁截面角隅处的轴向荷载(合力无偏心)为集中或分布荷载时,翼板不产生纵向应力不均匀现象;当作用于悬臂箱梁截面角隅处的轴向荷载(合力无偏心)为集中荷载时,翼板不产生纵向应力不均匀现象,而当荷载轴向分布时,翼板将产生纵向应力不均匀现象。实际工程中,横力弯曲使悬臂箱梁产生剪力滞效应,这种效应会与轴向分布荷载产生的效应叠加,设计时对此应予以充分考虑。  相似文献   
8.
针对RC梁开裂荷载计算方法尚未统一的现状,首先,结合18根RC梁试验数据对比了已有的6种RC梁开裂弯矩计算公式,发现开裂弯矩理论计算值与试验值的偏差大小和混凝土强度有关;然后,通过提出塑性变形发展程度系数k,推导新的RC梁开裂弯矩计算公式,并进一步基于k值和塑性影响系数计算值γk进行改进;最后,选取12根RC试验梁验证改进公式的准确性,证明改进公式的计算值与试验值吻合更好且偏于安全。  相似文献   
9.
Many experimental results have revealed that the re‐entanglement kinetics of disentangled polymers is much slower than that predicted by tube theory. This retarded recovery of fully entangled state is of practical significance that shear‐induced modification may offer a way to improve processability for a polymer by reducing viscosity. This work tried to figure out the shear‐rate dependence variation of viscosity in the view of evolution of entanglement state through disentanglement and re‐entanglement, aiming to provide fundamental insights into application prospect of shear‐induced modification in preparing “in‐pellet” disentangled polymers prior to final processing. High‐density polyethylene was sheared on a parallel‐plate rotational rheometer with a linearly increased shear rate. Results showed that higher shear rate could induce further disentanglement, resulting in a lower viscosity with a reduction rate up to 93.7%, larger molecular weight between entanglements Me , and longer re‐entanglement time. Additionally, less entanglement would give a larger lamellar thickness of sheared samples after nonisothermal crystallization. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 598–606  相似文献   
10.
We consider the Griffith fracture model in two spatial dimensions, and prove existence of strong minimizers, with closed jump set and continuously differentiable deformation fields. One key ingredient, which is the object of the present paper, is a generalization to the vectorial situation of the decay estimate by De Giorgi, Carriero, and Leaci. This is based on replacing the coarea formula by a method to approximate SBDp functions with small jump set by Sobolev functions, and is restricted to two dimensions. The other two ingredients will appear in companion papers and consist respectively in regularity results for vectorial elliptic problems of the elasticity type and in a method to approximate in energy GSBDp functions by SBVp ones.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号